ТЕХНІКО-ЕКОНОМІЧНЕ ОБҐРУНТУВАННЯ

Реконструк	ція індивідуального	теплового пункту	в житловому будинк	y
осьь «з				
Голова правління				
(посада, уг				

3міст

1	Зага	льні данні	_
	1.1 Me	та проекту	3
	1.2 Xa	рактеристика об'скту проектування	3
		Кліматичні умови зони будівництва та експлуатації	
	1.4.	Опис стану будівлі	4
2		ліз економічного ефекту від встановлення погодного регулювання	
	1.1	Опис реалізації проекту встановлення погодного регулювання та балансувальних клапанів.	5
	1.2 погод	Розрахунок економії від реалізації Проєкту модернізації системи ЦО з встановленням ІТП з ним регулюванням	.3
	1.3	Соціальні результати:	
2.	Ста	лість Проекту	

1 Загальні данні

1.1 Мета проекту

Об'єктом є житловий будинок , розташований за адресую в м. Києві О 5». Багатоквартирний житловий будинок має одну секцію, з підвалом, будинок має прямокутну форму. Будинок розташований в у районі м. Києва.

Проектом передбачається ТЕХНІКО-ЕКОНОМІЧНЕ ОБГРУНТУВАННЯ Реконструкція індивідуального теплового пункту в житловому будинку ОСББ по вул. 1. Київ з метою підвищення енергоефективності тепло споживання. А також модернізація внутрібудинкової системи опалення з впровадженням балансування, заміною на ППР та утепленням трубопроводів ЦО та ГВП.

1.2 Характеристика об'єкту проектування

На цей час система опалення будинку приєднана до зовнішніх теплових мереж по залежній схемі за допомогою елеваторних вузлів, які встановлено в підвалі житлового будинку.

Облік спожитої теплової енергії на потреби опалення визначається за допомогою двох приладів обліку теплової енергії.

Таблиця 1 Характеристика об'єкту проектування

Найменування	Значення
Назва організації	5.0
Адреса організації (повна поштова адреса, індекс)	M
Шифр проекту будинку	
Телефон	
Електронна адреса контактної особи	

1.3 Кліматичні умови зони будівництва та експлуатації Таблиця 2 Кліматичні умови зони будівництва та експлуатації

Найменування	Значення		
Назва організації	ОСББ «ЗАКРЕВСЬКОГО 45»		
Опалювальний. період (ОП): Початок [дд/мм]	20.10		
Закінчення [дд/мм]	13.04		
Градусо-доби	3537		
РТ холодного періоду, (°C)	-22		
РТ теплого періоду, (°C)	23		
Тривалість опалювального періоду, год.	4224		
Тривалість періоду охолодження, год.	2000		
Середня швидкість вітру в ОП, м/с	2,8		
Переважний напрям вітру в ОП	3x.		
Кліматичний район	I		
Розрахункова температура внутрішнього повітря	20 °C		
Тривалість опалювального періоду	176 діб		
Середня температура повітря за опалювальний період	-0,1 °C		

Основні кліматологічні характеристики площадки (за ДСТУ-Н Б В.1.1-27:2010):

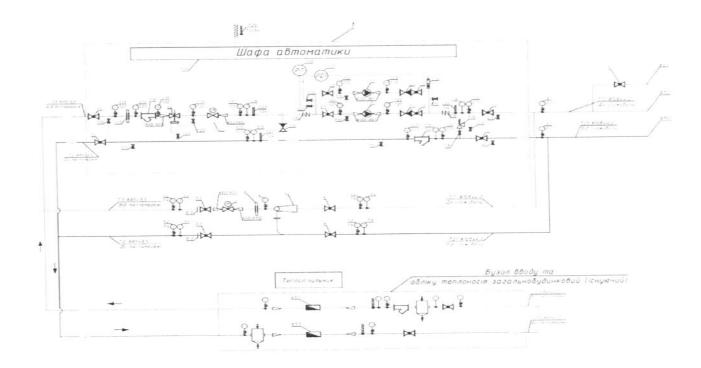
1.4. Опис стану будівлі

Найменування	Значення
Кількість поверхів, од.	1 секція – 16 поверхів;
Основний матеріал стін	Керамзитобетон
Система опалення	Централізована
- наявність лічильника опалення	Наявний
- наявність регулювання	відсутня
- балансування системи опалення	відсутнє балансування
Теплове навантаження на систему опалення	0,394 Гкал/год
Теплове навантаження на систему гарячого водопостачання, максимальне	0,295 Гкал/год
Розрахункова (проектна температура в будівлі)	20 °C
Система опалення	залежна

2 Аналіз економічного ефекту від встановлення погодного регулювання

1.1 Опис реалізації проекту встановлення погодного регулювання та балансувальних клапанів.

Необхідність в реконструкції системи теплопостачання виникла внаслідок невідповідності наявної системи теплопостачання будинку сучасним вимогам регулювання теплового споживання та вимогам нормативної документації, а саме ДБН В.2.5-67:2013 Опалення, вентиляція та кондиціонування пункт: 6.1.10 Приєднання системи водяного опалення (у тому числі фонової та чергової) будівлі (квартири при індивідуальному опаленні) будь-якого класу енергоефективності слід здійснювати з автоматичним регулюванням теплового потоку, залежним від погодних умов, якщо таке регулювання не передбачене у джерелі. При централізованому теплопостачанні згідно з ДБН В.2.5-39 кожен індивідуальний тепловий пункт (ІТП) повинен мати автоматичне регулювання теплового потоку, залежне від погодних умов.


В теплових пунктах житлового будинку, встановлено елеваторні вузли, при зміні температури зовнішнього повітря, регулювання параметрів системи опалення здійснюється шляхом зміни температури теплоносія, який подається надходить Параметри теплоносія, який теплопостачальної організації. теплопостачальної організації є досить інерційними - не можуть оперативно реагувати на зміну температури зовнішнього повітря, тому відбувається надмірне опалення

будівлі.

Також температура теплоносія у зовнішніх теплових мережах у перехідний період опалення не опускається нижче 65° С. Тому в даний період, при відсутності кількісного регулювання теплоносія (погодного регулювання), відбувається надмірне

опалення будівлі (перетоп).

В процесі реалізації проекту у якості заходу, який дозволить підвищити пропонується енергії, теплової використання автоматизованих модулів, які реалізують місцеве регулювання температури теплоносія системи опалення в залежності від погодних умов. Нове обладнання буде здійснювати автоматичне обмеження витрати теплоносія, автоматичний контроль та управління регулятором теплового потоку та циркуляційними насосами, згідно з температурою зовнішнього повітря дивись Малюнок 1.

Малюнок 1 Принципова схема ITП (вузол регулювання).

При цьому передбачається перевод в резерв існуючих елеваторних вузлів. Це дозволить покращити якість теплопостачання, тобто подавати теплоносій відповідно до його потреб, забезпечивши необхідний комфорт. При підвищенні температури зовнішнього повітря вище $+10^{\circ}$ С опалення буде вимикатися, що дозволить суттєво економити теплову енергію.

На цей час в житловому будинку спостерігається нерівномірність розподілення теплової енергії по стояках опалення та поверхам. Для поліпшення якості опалення споживачів передбачається збільшення циркуляції теплоносія по внутрішньому контуру опалення. Дане рішення призведе до вирівнювання внутрішньої температури повітря по всім квартирам житлового будинку.

Економічний ефект від встановлення погодного регулювання та балансування

системи по стояках опалення.

Визначаємо величину економії теплової енергії та економічний ефект від впровадження системи погодного регулювання у тепловому пункті житлового будинку.

Відсоток економії споживаної теплової енергії при впровадженні системи

складається з наступних складових:

$$Q_{\Sigma} = \Delta Q_{T} + \Delta Q_{n} + \Delta Q_{\delta a \pi}$$

де ΔQ_n - економія теплової енергії шляхом уникнення явища надмірного опалення будівлі (перетопи),

 $\Delta Q_{\scriptscriptstyle T}$ - економія теплової енергії внаслідок наявності побутових тепловиділень та теплопритоків від сонячної радіації,

10

 $\Delta Q_{\mathrm{бал}}$ - економія теплової енергії внаслідок налаштування балансування системи опалення та збільшення циркуляції теплоносія.

Економія теплової енергії внаслідок уникнення явища надмірного опалення будівлі ΔQ_{II} в середньому складає 5 - 18%. При підвищенні температури зовнішнього повітря система автоматично знижуватиме температуру теплоносія за встановленим графіком, а при підвищенні температури вище +10 ... +12 ° C, опалення буде вимикатись. Оскільки даний будинок має досить суттєве теплове навантаження на систему опалення (1,439 Гкал/год), то економія теплової енергії може досягати 17%, але для розрахунків приймемо – 12%;

Економія теплової енергії внаслідок наявності побутових тепловиділень та

теплопритоків від сонячної радіації розраховується за формулою:

$$\Delta Q_{T} = \frac{\Delta t_{B}^{\mu}}{(t_{B}^{p} - t_{B}^{cp})} \cdot 100, \%$$

 $\Delta Q_{\scriptscriptstyle T} = \frac{\Delta t_{\scriptscriptstyle B}^{\scriptscriptstyle H}}{\left(t_{\scriptscriptstyle B}^{\scriptscriptstyle p}-t_{\scriptscriptstyle H}^{\scriptscriptstyle cp}\right)} \cdot 100,\%$ де $t_{\scriptscriptstyle B}^{\scriptscriptstyle p}$ — усереднена розрахункова температура повітря у приміщеннях, $t_{\scriptscriptstyle B}^{\scriptscriptstyle p} = 20\,^{\circ}\text{C};$ $t_{\scriptscriptstyle H}^{\scriptscriptstyle cp}$ — середня температура зовнішнього повітря за опалювальний сезон, $t_{\scriptscriptstyle H}^{\scriptscriptstyle cp} = -0.1\,^{\circ}\text{C};$

Δt_в - усереднене за опалювальний сезон перевищення температури повітря в приміщеннях поверх комфортної через теплонадходження від сонячної радіації та побутових тепловиділень, °С. Орієнтовно можна прийняти $\Delta t_B^\mu = 1,5$ °С (за дослідними даними)

$$\Delta Q_{H} = \frac{1,5}{(20 - (-0,1))} \cdot 100 = 7,5 \%$$

Економія теплової енергії внаслідок налаштування балансування системи опалення та збільшення циркуляції теплоносія по внутрішньому розраховується за формулою:

$$\Delta Q_{\delta a \pi} = \frac{\left(t_{\scriptscriptstyle B}^{'} - \left(t_{\scriptscriptstyle \Pi}^{c p}\right)\right)}{\left(t_{\scriptscriptstyle B}^{p} - \left(t_{\scriptscriptstyle \Pi}^{c p}\right)\right)} \cdot 100, \%$$

 $t_{_{\rm II}}^{^{\rm cp}}$ — середня температура зовнішнього повітря за опалювальний сезон, $t_{_{\rm II}}^{^{\rm cp}}$ = -0,1 °C;

 $t_{\rm B}^{'}$ - середня фактична температура внутрішнього повітря, $t_{\rm B}^{'}=22,5^{\rm o}{\rm C}$ (на даний момент фактична температура в квартирах на 1 поверсі складає +21°С, 9 поверх складає на 1 поверсі південній стороні будинку: +19°C, a ПО +26°С, 9 поверх складає + 20°С.)

Середня температура по будинку буде +22,5°C);

Середня температура по будинку буде
$$+22,5$$
°С); t_B^p – усереднена розрахункова температура повітря у приміщеннях, $t_B^p = 20$ °C; $\Delta Q_{6a\pi} = \frac{(22,5-(-0,1))}{(20-(-0,1))} \cdot 100 = 112,4\%$ (можлива економія $12,4\%$)

Внаслідок збільшення циркуляції теплоносія по внутрішньому контуру системи опалення вирівнюється температура внутрішнього повітря в квартирах будинку.

Сумарний відсоток економії споживаної теплової енергії при впровадженні системи кількісного регулювання витрати теплоносія у тепловому пункті житлового будинку складе

$$Q_{\Sigma} = 12 + 7.5 + 12.4 = 31.9\%$$

Економія споживання тепла з урахуванням регулювання споживання опалення в нічний час

Впровадження температурного регулювання в ІТП дозволить знизити споживання тепла у нічний час. Рекомендується проводити зниження температури теплоносія з 21-00 на 6- ть годин ранку. Через шість годин регулятор повинен включити опалення на витрату тепла, для забезпечення відновлення температури всередині квартир до нормальної. Нормальна температура повинна бути досягнута до 6-7 години ранку.

Найбільш доцільне зниження температури Δt вн = 2 ° C (з tрвн = 20 ° C до 18 ° C).

Для орієнтовних розрахунків можна прийняти a = 6-7 ч.

$$\Delta Q_{e\kappa}^{-n} = Q_{no}^{\phi} - n \cdot \frac{Q_{no}^{-\phi} \cdot 6 \cdot 2}{24 \cdot (t_{en} - t_{n}^{\phi})}, \Gamma \kappa a \pi / mic$$

де Qцоф – фактичне споживання на систему опалення, житлового будинку, Гкал/міс;

n - кількість діб в розрахунковому місяці.

п - кількість діб в розрахунковому місяці.

Таблиця 4- Економія споживання тепла з після реалізації енергоефективних заходів

Період	Споживання Гкал до реалізації енергоефективних заходів (ЦО)	Споживання Гкал після реалізації енергоефективних заходів (ЦО)
Жовтень- Квітень 2023/2024	723,55	492,7

3 Аналіз економічного ефекту від заміни та утеплення трубопроводів

3.1 Розрахунок поверхні теплової ізоляції

Розрахунок температури на поверхні ізоляції проведено згідно СП 41-103-2000 «Свод правил по проєктированию и строительству».

Температура на внутрішній та зовнішній поверхні стінок ізоляції, °С:

$$t_{_{GH}}^{i3} = t_{_{6}} - q_{_{L}} \cdot (R_{_{GH}}^{L} + R_{_{CM}}^{L}), \tag{0.1}$$

$$t_{ij}^{i3} = t_{ij}^{i3} - q_L \cdot R_{ij}^L, \tag{0.2}$$

де $t_{_{\it B}}$ – температура теплоносія в трубопроводі, $^{\rm o}{\rm C}$;

 q_L – щільність теплового потоку через циліндричну теплоізоляційну поверхню, $B_{\rm T/M}$;

 $R_{\kappa \mu}^{L}$ – лінійний термічний опір тепловіддачі внутрішньої стінки ізолюємого трубопроводу,

 R_{cm}^{L} – лінійний термічний опір кондуктивному переносі теплоти стінки ізолюємого трубопроводу,

 $R^L_{i_3}$ – лінійний термічний опір кондуктивному переносу теплоти циліндричного шару ізоляції,

 $R_{_{u}}^{^{L}}$ – лінійний термічний опір ізоляції, (м. $^{\circ}$ C)/Вт:

Щільність теплового потоку через циліндричну теплоізоляційну поверхню, Вт/м:

$$q_{L} = \frac{t_{e} - t_{n}}{R_{en}^{L} + R_{em}^{L} + R_{n}^{L} + R_{n}^{L}} \tag{0.3}$$
 Лінійний термічний опір тепловіддачі внутрішній стінці ізолюємого трубопроводу, (м·°C)/Вт:

$$R_{en}^{L} = \frac{1}{\pi \cdot d_{en}^{cm} \cdot \alpha_{en}} \tag{0.4}$$

Лінійний термічний опір кондуктивному переносу теплоти стінки ізолюємого трубопроводу, (M·0C)/BT:

$$R_{cm}^{L} = \frac{1}{2 \cdot \pi \cdot \lambda_{cm}} \cdot \ln \frac{d_{n}^{cm}}{d_{m}^{cm}}$$

$$\tag{0.5}$$

Лінійний термічний опір кондуктивному переносу теплоти циліндричного шару ізоляції, (м·°С)/Вт:

$$R_{is}^{L} = \frac{1}{2 \cdot \pi \cdot \lambda_{is}} \cdot \ln \frac{d_{n}^{is}}{d_{sn}^{is}}$$

$$\tag{0.6}$$

Лінійний термічний опір ізоляції, (м·°C)/Вт:

$$R_n^L = \frac{1}{\pi \cdot d_n^{\prime\prime} \cdot \alpha_n} \tag{0.7}$$

де α_{sn} , α_n – коефіцієнти тепловіддачі внутрішньої поверхні стінки ізолюємого об'єкту та зовнішньої поверхні ізоляції, $\mathrm{Br/(m^{.0}C)};$

 λ_{cm} , λ_{is} — коефіцієнти теплопровідності відповідно матеріалу стінки ізолюємого трубопроводу та ізоляції, Вт/(м·°С);

 $d_{_{\mathit{H}}}^{^{cm}}$, $d_{_{\mathit{BH}}}^{^{cm}}$ – зовнішній та внутрішній діаметри стінки трубопроводу, м

 $d_{_{\it H}}^{i_3}$, $d_{_{\it BH}}^{i_3}$ – зовнішній та внутрішній діаметр ізоляції, м.

Вихідні дані для розрахунків наведено в таблиці 4.1. Результати розрахунків наведено в таблицях 4.2-4.5.

Таблиця 3.1 – Вихідні дані для розрахунків поверхні теплової ізоляції

Параметр	Одиниці виміру	Значення
Температура теплоносія в подавальних трубопроводах системи опалення	°C	90
Температура теплоносія в зворотних трубопроводах системи опалення	°С	70
Температура теплоносія в подавальних трубопроводах системи ГВП	oC	55
Температура теплоносія в циркуляційних трубопроводах системи ГВП	°С	45
Температура оточуючого повітря	°C	10
Коефіцієнт теплопровідності сталевих трубопроводів	Вт/(м·К)	50
Коефіцієнт теплопровідності поліпропіленових трубопроводів	BT/(M·K)	0,24
Коефіцієнт теплопровідності ізолюючого матеріалу	Вт/(м·К)	0,04
Приведений коефіцієнт тепловіддачі між теплоносієм та внутрішньою стінкою труби системи опалення	Вт/(м ² ·К)	2500
Приведений коефіцієнт тепловіддачі між теплоносієм та внутрішньою стінкою труби системи ГВП	BT/(M ² ·K)	500
Приведений коефіцієнт тепловіддачі між повітрям та поверхнею теплової ізоляції	BT/(M ² ·K)	10

Таблиця 3.2 – Розрахунок температури поверхні ізоляції на трубопроводах системи опалення

DN труби	$\mathbf{R}^{\mathrm{L}}_{_{\mathrm{BH}}}$	R ^L ct	R^L_{i3}	R^{L}_{H}	q _L	t ^{er} BH	t ^{cT} _H
MM	(м ² ⋅K)/Вт	(м ² ⋅K)/Вт	(M ² ⋅K)/BT	(м ² ·К)/Вт	Вт/м	°C	°C
80	0,002	0,424	4,094	0,128	17,2	82,67	12,20
65	0,002	0,622	4,156	0,147	16,2	79,87	12,39
50	0,003	0,521	4,031	0,203	16,8	81.19	13,41
40	0,003	0,725	3,903	0,249	16,4	78,06	14,08
32	0,004	1,082	3,530	0,312	16,2	72,37	15,07
25	0,005	0,982	4,202	0,346	14,5	75,73	15,00
20	0,006	0,888	3,802	0,490	15,4	76,20	17,55
15	0,008	1,145	4,371	0,531	13,2	74,76	17,01

Таблиця 3.3 – Розрахунок температури поверхні ізоляції на трубопроводах системи ГВП

DN труби	$R^L_{_{ m BH}}$	R ^L _{ct}	$\mathbf{R^L_{i3}}$	R ^L _{II}	qь	t ^c 1 _{BH}	t ^{e1} H
MM	(м ² ⋅К)/Вт	(м ² ⋅К)/Вт	(м ² ⋅K)/Вт	(м ² ⋅К)/Вт	Вт/м	°C	°C
90	0,010	2,117	4,371	0,118	6,8	40,5	10,80
75	0,012	2,130	4,544	0,135	6,6	40,9	10,89
63	0,014	2,114	4,656	0,157	6,5	41,2	11,02
50	0,018	2,142	4,371	0,212	6.7	40,6	11,42
40	0,022	2,133	12,114	0,038	3.1	48,2	10,12
32	0,027	2,133	11,870	0,050	3,2	48,1	10,16
25	0,035	2,178	12,807	0,051	3,0	48,4	10,15
20	0,044	2,178	12,114	0,076	3,1	48,1	10,24

4 Розрахунок економії теплової енергії

4.1 Розрахунок економії теплової енергії Таблиця 4.1— Теплові втрати подавальних трубопроводів системи опалення за середнім тепловим потоком

Умовний діаметр/DN,	Протяжність трубопроводів,	Тепловий потік через трубу, Вт/м		Втрати теплоти, Гкал/рік		Економія	
MM	M	Неізол.	Ізол.	Неізол.	Ізол.	Енергії, Гкал/рік	Грошова, тис.грн/рік
125	0	342,9	15,1	0,000	0,000	0,000	0,00
110	0	276,4	14,8	0,000	0,000	0,000	0,00
90	12	199,6	14,7	11,603	0,856	10,747	17,78
75	56	136,2	14,2	5,938	0,621	5,317	8,80
63	168	162,2	14,9	132,023	12,136	119,887	198,34
50	168	116,7	14,4	42,378	5,246	37,132	61,43
40	0	78,3	14,3	0,000	0,000	0,000	0,00
32	0	86,1	14,5	0,000	0,000	0,000	0,00
25	76	95,1	12,9	26,243	3,563	22,680	37,52
20	52	73,7	13,6	13,924	2,568	11,356	18,79
Разом				246,790	27,585	119,205	197,205

Таблиця 4.2 – Теплові втрати трубопроводів системи ГВП за середнім тепловим потоком

Умовний діаметр/DN,	Протяжність трубопроводів,	Тепловий потік через трубу, Вт/м		Втрати теплоти, Гкал/рік		Економія	
мм	M	Неізол.	Ізол.	Неізол.	Ізол.	Енергії, Гкал/рік	Грошова, тис.грн/рік
125	0	181,6	8,0	0,000	0,000	0,000	0,00
110	0	146,3	7,8	0,000	0,000	0,000	0,00
90	148	105,7	7,8	56,822	4,193	52,628	87,07
75	8	72,1	7,5	2,096	0,219	1,877	3,10
63	44	85,9	7,9	13,729	1,262	12,467	20,63
50	8	61,8	7,6	1,795	0,222	1,573	2,60
40	0	41,4	7,6	0,000	0,000	0,000	0,00
32	88	45,6	7,7	14,570	2,457	12,113	20,04
25	0	50,3	6,8	0,000	0,000	0,000	0,00
20	0	39,0	7,2	0,000	0,000	0,000	0,00
Разом				89,011	8,354	80,658	133,441

Загальне економія теплової енергії від теплової ізоляції трубопроводів системи опалення складає 199,863 Гкал/рік.

Таблиця 4.3- Економія споживання тепла з після реалізації енергоефективних заходів

Період	Споживання Гкал до реалізації енергоефективних заходів	Споживання Гкал після реалізації енергоефективних заходів		
Жовтень- Квітень 2023/2024 (ЦО)	723,55	604,35		
Сезон 2023/2024 (ГВП)	480,2	399,54		

Таблиця 4.4- Порівняння споживання теплової енергії житловим будинком до та після впровадження заходів

Показник	Одиниці виміру	До впровадження проекту	Після	Різниця - Після впровадження проекту	
			впровадження проекту	абсолютне значення	відносне значення, %
Споживання теплової енергії (на ЦО)	Гкал	723,55	373,5	350,05	48,38%
Споживання теплової енергії (на ГВП)	Гкал	480,2	399,54	80,66	16,80%
Вартість спожитої теплової енергії в поточних цінах (в цінах 2023р -1654,41 грн/Гкал з ПДВ)	тис. грн./рік	1 991 496	1 278 925	712 571	35,78%

5 Розрахунок економії від реалізації Проекту модернізації системи ЦО та ГВП з встановленням ІТП з погодним регулюванням.

Для розрахунку показників ефективності використані наступні дані:

- вартість теплової енергії для населення житлових будинків з будинковими приладами обліку теплової енергії — **1654,41 грн./Гка**л;

Таблиця 5.1 - Економічний ефект від реалізації проекту

	Вартість заходів (в грн)	Очікувана річна економія		Простий термін окупності
		Гкал /рік	грн/рік, при тарифі 1354,78 без ПДВ	років
Всього бюджет проекту	4 630 969	430,71	712 571	6,5

Простий термін окупності проекту складає: То

 $T_0 = 6.5$ pokib

№ п/п		Вартість заходів (в грн)			
	Назва робіт	За кошти КМДА	За кошти ОСББ або ЖБК	0/0	
1	"Капітальний ремонт внутрішньобудинкових інженерних мереж" (Виконано)	_	33 652,00	0,71%	
2	Реконструкція індивідуального теплового пункту (ІТП, Заміна трубопроводів ГВП з утепленням)	3 234 394,00		68,46%	
3	"Капітальний ремонт внутрішньобудинкових інженерних мереж"(балансування стояків опалення, заміна трубопроводів опалення та утеплення) (Заплановано на 2025 р.)		1 396 575,00	29,56%	
4	Проектні роботи (Реконструкція індивідуального теплового пункту в житловому будинку ОСББ «С трупов вул. (виконано)		60 000,00	1,27%	
Всього бюджет проекту		4 724 621,00		100,00%	
Частка співфінансування		68,46%	31,54%	100,00%	

1.2 Соціальні результати:

- Поліпшення комфорту проживання співвласників у житловому будинку;
- Економія теплоенергії та коштів мешканців.

Слід зазначити, що надалі тарифи на централізоване опалення для населення будуть зростати у зв'язку із необхідністю їх приведення до економічно обгрунтованого рівня, що значно зменшить строки окупності проекту.

2. Сталість Проекту

Після реалізації проекту «Реконструкція індивідуальних теплових пунктів житлового будинку () 3 а адресою: вулиця

запланований подальший пошук та залучення фінансових ресурсів, в тому числі власних коштів співвласників житлового будинку, з метою продовження поетапної термосанації будинку. Планується провести теплоізоляцію цоколю, теплоізоляцію даху та інші заходи з енергоефективності.

Також буде забезпечено розповсюдження набутого досвіду щодо реалізації Проекту шляхом участі представників ОСББ у відповідних круглих столах, семінарах і т.д.

Голова правління ОСЕ

45

(посада, уповно